
PIIM IS A RESEARCH AND DEVELOPMENT
FACILITY AT THE NEW SCHOOL

68 Fifth Avenue
New York, NY 10011

THE PARSONS INSTITUTE
FOR INFORMATION MAPPING

212 229 6825
piim.newschool.edu

© 2014 PARSONS JOURNAL FOR
INFORMATION MAPPING AND PARSONS
INSTITUTE FOR INFORMATION MAPPING

KEYWORDS abstract rendering, alpha composition, color
weaving, data transformation, highalpha, homoalpha, over-
plotting, pixel-level effect, visual mapping,

abStRact The fundamental premise of visualization is
that a useful correspondence between pixels and data can
be built. However, visualization programs rarely operate at
the pixel level. Instead of the discrete, finite space of pixels,
the most common visualization models work with can-
vases of floating-point coordinates and geometric shapes.
Preserving some source data link all the way down to the
pixel level provides many opportunities for improving vi-
sualization. This paper describes Abstract Rendering (AR),
a framework that preserves the data-to-pixel link. Using
this pixel-level link, AR is used to provide a unique control
over the final visual representation of data sets at all scales
and from a variety of visualization technique families.

intRODuctiOn

Visualization transforms source information into a ren-
dered set of pixels. The info-vis reference model provides
a vocabulary for discussing that transformation process.1
Visualization frameworks tend to focus on “visual map-
pings” stage. In this stage raw data is projected into an
abstract coordinate space, and graphics are represented

with high precision on an abstract, typically large, can-
vas. Conversion to actual pixels is given significantly less
attention in current research. Many frameworks simply
offload the view transforms and related rasterization
to external graphics libraries (such as SVG, OpenGL
or Java2D). Efficient transfer to or speed of the exter-
nal library are often the only consideration discussed.
Abstract Rendering (AR) expands the “view transform”
stage of the info-vis reference model (see Figure 1)
enabling direct discussion of render-time effects pertinent
to visualization construction in a simplified manner.

The need to consider pixel-level effects is most appar-
ent when working with point-oriented datasets where the
number of items to display exceeds the number of pixels
on the screen. For example, the visualizations in Figure
2 are based on a dataset that contains one point for every
person in the contiguous United States according to the
2010 census2 (i.e. 306.7 million points). At 300dpi,
it would require a sheet of paper approximately five
feet square to provide a discrete dot for every person
(ignoring actual geographic distribution). Treatments
based only on geometric points and alpha composi-
tion cannot convey the true dynamic range and spatial
distribution of the data (Figure 2a). Considering the
pixels directly enables a variety of more accurate treat-
ments (Figure 2b). AR provides a means of controlling
the transition between the geometric representation
and the pixel representation.

Succinctly, abstract rendering is the application
of data transformations at render time. The fundamental
observation is that individual pixels of a visualization

Preserving Data While Rendering

JOSEph a. cOttam, phD

pEtER Wang

Figure 1: Information visualization reference model Card et al (1999), extended for Abstrat Rendering.

source
data

data
tables

visual
abstraction

significant
set aggregates views

data
transforms

visual
mappings selection aggregation

view transforms

transfer

preserving data while rendering
joseph a. cottam, phd and peter wang

PARSONS jOuRNAl FOR INFORMATION MAPPING
vOluMe vI ISSue 1, wINTeR 2014
[PAGe 2]

© 2014 PARSONS JOURNAL FOR
INFORMATION MAPPING AND PARSONS
INSTITUTE FOR INFORMATION MAPPING

map back to underlying data, mediated by the more com-
mon geometric representations. AR provides a means
of directly defining that per-pixel transformation.
An AR definition consists of two equations (discussed
in detail in Section 2.1). The first defines per-pixel
data summarizations, the second provides transforma-
tions of those summarizations (eventually to colors).
The system is named abstract rendering because it
computes a per-pixel result, much like standard render-
ing, but the pixel values do not need to be colors and
may undergo further transformations (thus, the values
remain in a more abstract space). AR enables direct
expression of many visualization behaviors, including
over-plotting, pixel-oriented techniques, and automated
visualization analysis (see Section 3).

2 RElatED WORK

Visualization is most often concerned with pixels in two
ways; first, are visualization techniques that are specifical-
ly targeted at pixel-level details (so-called “pixel-oriented
techniques”). Pixel-oriented techniques try to maximize
data preservation by considering individual pixels in the
display. Often pixels are placed in 1:1 correspondence
with data items. Common features include space-filling
layouts and distortions oriented at packing and spread-
ing data to prevent over-plotting.3

The second way visualizations often deal with pixel-
level effects is emergent effects, as occur with alpha
composition. Standard alpha composition has known
limitations for handling large amounts of over-plotting.
Many alpha channels are limited to eight bits, capping
over-plot at 256 items if alpha is set to the minimum
visible level. In most circumstances, such low alpha val-
ues are unacceptable, since areas with few values would
be practically indistinguishable from the background.
Johansson, et al. describes a multi-stage technique for
high-definition alpha compositing, and Muelder, et al.
employs this technique while visualizing MPI communi-
cation behavior.4

High-definition alpha composition invokes transfer
functions more common of scientific visualization.2
A traditional transfer function takes a 3D information
space, discretized into a set of “voxels,” and maps each
voxel to a color. This mapping can take into consider-
ation information beyond the properties of the immedi-
ate voxel including neighboring voxel values and viewing
angle. The application of transfer function in AR follows
the pattern of earlier work Muelder et al and Johansson
et al., operating on pixels instead of voxels. A high-
precision pixel space is created (either explicitly as an

(a) Standard Alpha Composition

(b) Bin-based Counts, Interpolation and Perceptual
Corrections

Figure 2: US Census populations with and without bin-
based counts realized.

preserving data while rendering
joseph a. cottam, phd and peter wang

PARSONS jOuRNAl FOR INFORMATION MAPPING
vOluMe vI ISSue 1, wINTeR 2014
[PAGe 3]

© 2014 PARSONS JOURNAL FOR
INFORMATION MAPPING AND PARSONS
INSTITUTE FOR INFORMATION MAPPING

off-screen buffer or implicitly by functional processes
on a scene-graph) for the source data to the transfer
function. The transfer function processes this high-pre-
cision space in the context of the view transformation
to determine the actual rendered pixels. This process
may include reference to neighboring pixels, the view
transformation, or underlying source data. The transfer
function provides opportunities to perform render-time
optimizations such as ensuring visibility of particularly
important features and emphasizing specified range
in a statistical distribution.

Some techniques do consider pixel-level issues
in ways distinct to the two main methods described
above (explicit pixel-oriented techniques and emergent
controls). Color-weaving is a recent technique in this
category.6 Color-weaving presents each relevant color
in part of each region it belongs in, rather than blending
each color in a pixel. The colors in the region can be
made proportional to the underlying data, similar
to how opacity scaling enables proportional contribu-
tion at the pixel level. Though developed for applying
multiple factors to a single region, the concept can be
extended to emergent regions formed by overlapping
polyhedra. Semantic zoom techniques change the visual
mapping of information based on the screen space allot-
ted to them.7 This is in contrast to standard zoom where
only the view’s affine transform is modified as screen
space is reapportioned. AR can implement semantic zoom
by modifying the renderer depending on screen space.8

Blending geometric and data components into
a rendering system is part of most coordinated multiple
views systems (CMV) where visual linkages are deter-
mined by underlying data relationships.9 These rela-
tionships typically override the regular standard visual
representations for selected items. It is also similar to Data
Shaders and many GPU techniques that use color buffers
as data buffers.10

Including binning in a visualization pipeline is not
unique to abstract rendering; 2013 saw several variations,
including imMens, Nanocubes, BigVis, and, to a lesser
degree, Scalar.11 Each of these frameworks shares the
core concept of using binning as a fundamental opera-
tion, though they differ in when the bins are created and
how those bins are used, however, all share an observa-
tion that pixel-level data is often useful. Nanocubes, and
imMens both focus on in-memory representations and
building visual representations off those representations,
while BigVis provides additional statistical modeling
capabilities over other bin-based frameworks.

Parallelizing rendering is an extensively explored

topic. In recent years, Piringer, et al. have described task-
parallel rendering based on distinct layers of data and
Cottam and Lumsdaine discussed task-and data-parallel
rendering techniques for dynamic data.12 Developments
such as OpenGL and OpenCL also add to this discussion.
OpenGL is essentially a framework controlling data-par-
allel analysis related to rendering; the OpenCL frame-
work extends that idea to more general data processing.13
The framework described in this paper complements much
of this research. For example, AR can provide a per-layer
and cross-layer composition framework for layer-based
techniques. It also provides a structure for exploiting
parallelism implicit in single-layer techniques (such as
color-weaving and semantic zoom).

2.1 abStRact REnDERing

Abstract rendering is done by chaining together functions
that fulfill four different roles. The four function-roles are
(1) select, (2) info, (3) aggregate, and (4) transfer. These
functions are combined in the following fashion:

bxy = Aggregate ({Info(g)|g ∈ Select(G, pxy)})
cxy = Transfer(bxy, B)

The top equation is used to create the pixel-like, discrete
representation of the source data from the geometric data.
This is essentially a binning process, so the discrete values
are referred to as bin values. The “select” function picks
geometric items for a given location; the “info” function
produces a data value associated with a geometric item;
and the “aggregate” function combines lists of info values
together to form a bin value. An effective synthetic data
space enables further analysis, performed by a “transfer”
function. In this formulation x/y values refer to posi-
tions on the screen and must match up between the two
equations to color a single image pixel. Furthermore,
G represents all glyphs with g ∈ G, Pxy is a geometric
representation of a pixel, bxy represents a bin (corre-
spondingly B represents the entire set of bins), and cxy
is a final pixel color. Each function fulfilling a particu-
lar role may require additional arguments, though the
given parameters above are common to most. For ease
of expression, multiple bin-transformations stages may
be performed. When more than one transfer function
is present, intermediate bin-values are numbered and
transfers are executed sequentially.

These four functions-roles are populated with specific
implementations to produce images. For example, Fig-
ure 2b is derived from the 2010 US Census. The glyph-
input (G) includes 306.7 million data points, one for each

preserving data while rendering
joseph a. cottam, phd and peter wang

PARSONS jOuRNAl FOR INFORMATION MAPPING
vOluMe vI ISSue 1, wINTeR 2014
[PAGe 4]

© 2014 PARSONS JOURNAL FOR
INFORMATION MAPPING AND PARSONS
INSTITUTE FOR INFORMATION MAPPING

person in the contiguous United States. Points are placed
so each census block contains the same number of points
as people and are annotated with the race information
to match the distributions in the block. This data was
originally produced in support of the Racial Dot Map
and shared by that project’s directory Cable (2013).14
The bin-space is built by counting the number of input
points that land on each pixel, then transforming and
interpolating over the full range of those counts. The AR
phrasing is:

b1xy = size({identity(g)|g ∈ intersects(G, pxy)})
b2xy = exp(b1xy, 1/3)

cxy = interpolate(b2xy, red.10, red, min(B2), max(B2))

A two-phase transformation is made to do perceptual cor-
rection that more closely approximates human response to
changes in luminance Stone (2003).15 The first step (creat-
ing the b1xy values) breaks the input data into a bin-grid
based on the pixel that the input points land on through
the “selector” function intersects. Since only the presence/
absence is of interest, the “info” function is identity
and the aggregator “size” counts the number of items
in a list. The creation of b2xy with the “transfer” function
exp values is for perceptual correction. The transformed
counts are then analyzed to find the minimum and maxi-
mum values. A color ramp can be built between those two
values and directly applied to the bin values. Therefore,
interpolate(b2xy , red.10, red, min(B2), max(B2)) supplies
the color for each pixel, operating as a second transfer
function (red.10 is red at 10% saturation, b2xy is a single
bin value and B2 is all bin-values from the earlier transfor-
mation). This avoids over-saturation in the highest peaks,
while guaranteeing visibility of the lowest troughs (shown
at 10% saturation). The result is a correct image of the
distribution of the nodes of the census.

The four function-role system can be employed to cre-
ate more complex representations as well. Extending the
census plot to represent race/ethnic-group information
in the color requires application of the “info” function. For
example, the image of Figure 4 is derived from racial an-
notations on each of the input points. It is phrased in AR:

HighAlpha
b1xy = countCategories({race(g)|g ∈ intersects(G, pxy)})
b2xy = reKey(b1xy,{African: Green, Asian: Red,

Caucasian: Blue, ...})
cxy = HDAlpha(b2xy, B2)

Race is the “info” function, and retrieves a race annota-

tion on each data point. The function countCategories is
the “aggregator” and creates a list of the unique values
seen paired with the sum of all occurrences of that cat-
egory. reKey is a “transfer”function and replaces the keys
of a dictionary with the keys found in a new dictionary.
In this case, the old dictionary was produced by count-
Categories and included programming race/ethnic-group.
reKey uses its second argument to associate the counts
with colors instead. HDAlpha is also a “transfer” function ,
and expects a set of colors and quantities for each pixel.16

The four function-role formalization of AR is the
basis of two implementations of AR (one in Java, one
in Python). Both implementations directly represent
all four functions. Despite the relatively high-level rep-
resentation, we have implemented dozens of bin-based
algorithms, and achieved efficient execution in a wide
variety of environments.

3 aR applicatiOnS

The general abstract rendering form can be used to
describe many different visualization techniques. This
section provides the equations for several existing tech-
niques. Again, example figures provided in this section
are derived from the 2010 US Census data.

3.1 OvERplOtting

overplot
b1xy = countCategories({race(g)|g ∈ intersects(G, pxy)})

cxy = HDAlpha(b2xy, B2)

Basic overplotting occurs when pixels colors are assigned
on a last-write-wins basis. To achieve overplotting in
the AR framework, an ordering basis must be estab-
lished. In the equation shown above, the ordering basis
is the Z-value of the glyphs. The information function
selects the color and the Z from each glyph, the reduc-
tion picks the color of the glyph with the largest Z value.
The resulting aggregate-set is a list of colors.

3.2 hOmOgEnEOuS alpha cOmpOSiting

HomoAlpha
b1xy = count({id(g)|g ∈ intersects (G, Pxy)})

cxy = interpolate(bxy, red.10, red, min(B), max(B))

Instead of selecting which item to render on a particular
pixel, blending the items of a pixel is a common tech-
nique. Alpha composition is the most common expres-
sion of blending.

PReSeRvING DATA wHIle ReNDeRING
jOSePH A. COTTAM, PHD AND PeTeR wANG

PARSONS jOuRNAl FOR INFORMATION MAPPING
vOluMe vI ISSue 1, wINTeR 2014
[PAGe 5]

© 2014 PARSONS jOuRNAl FOR
INFORMATION MAPPING AND PARSONS
INSTITuTe FOR INFORMATION MAPPING

Homogeneous alpha composition occurs whenever
all rendered items have the same visual representation.
Th e synthetics-set is made by counting the glyphs that
intersect each pixel (using the count function). Th e in-
terpolate function then interpolates between two colors
(red.10 being 10% saturated red). Th e full bin-set (B)is
used to establish the low and high input values. Working
with the counts directly enables more fi ne-grained con-
trol over the interpolation, avoiding issues of unknow-
ingly over-saturating the alpha-buff er. Th erefore,the AR
representation is trivially able to implement high-defi ni-
tion alpha composition.17

Homogeneous alpha composition is used to produce
density representations, like those in Figures 2b and
3. Th e adjacency matrix (Figure 3) represents 37 mil-
lion transactions from the Kiva micro-fi nance site. Each
transaction represents a monetary transfer between
a lender, borrower, or intermediary. Each actor was
given an identifi er, with senders placed on the x-axis
and receivers placed on the y-axis. Each transaction is
represented as a point at the intersection of the sender
and receiver. Th e coloring was done by log-transforming
the counts of items contained in each pixel. Using stan-
dard alpha composition, over 50% of the colored pixels
would be at full saturation. With AR, an image that
displays more nuanced patterns is achieved.

3.3 high-DEfinitiOn alpha cOmpOSiting

Full high-defi nition alpha composition extends the
concern of buff er over-saturation seen in homogeneous
alpha composition to both the alpha and the color buff ers.
As with homogeneous alpha composition, the key is to
measure the extrema before applying the interpolation

Figure : Adjacency matrix of the Kiva dataset with
density log transformed and homogeneous alpha compos-
iting applied.

Figure :
Adjacency matrix
of the Kiva data-
set with density log
transformed and
homogeneous alpha
compositing applied.

PReSeRvING DATA wHIle ReNDeRING
jOSePH A. COTTAM, PHD AND PeTeR wANG

PARSONS jOuRNAl FOR INFORMATION MAPPING
vOluMe vI ISSue 1, wINTeR 2014
[PAGe 6]

© 2014 PARSONS jOuRNAl FOR
INFORMATION MAPPING AND PARSONS
INSTITuTe FOR INFORMATION MAPPING

function. Equation HighAlpha from Section 2.1 gives
the defi nition for high-defi nition alpha composition.
Details on these range calculations and scalings can be
found in the earlier works of Muelder et al and Johans-
son et al.18 Th e necessary range information is derived
from the bin-values (B). Equation HighAlpha is applied
in Figure 4.

High-defi nition alpha composition can be modifi ed
by sorting on the output color or a data fi eld to achieve

“stratifi ed” alpha composition. Th is stratifi cation can be
used to emphasize particular values in the plot (since
alpha composition is order dependent) or provide more
effi cient rendering (for example, WebGL oft en performs
faster when there are fewer pen-color changes).

3.4 cOlOR WEaving

WEAVE
b1xy = countCategories({race(g)|g ∈ intersects(G, pxy)})
b2xy = reKey(b1xy,{African: Green, Asian: Red,

Caucasian: Blue, ...})
cxy = randomCategory(b2xy)

Color weaving takes an alternative tack to representing
more than one item in a space. Rather than blending

colors in one pixel as with alpha composition, it rep-
resents a mosaic pattern of the original source colors
throughout the space. To achieve this, new “selector”
and “transfer” functions are is used. Instead of just
containing items that land in a pixel, sameContainer
gets all items that land in the same region as the current
pixel. For Figure 5, any pixel that lands in a state will
get values for all people in the state. Th e second transfer
function, randomCategory, selects a single category
to from the list and returns just its key (which, by virtue
of reKey) is a color. Implementing randomCategory in ac-
cordance with Hagh-Shenas et al, results in proportional
color weaving.19 Modifi cations to how randomCategory
selects values yields diff erent weaving variations.

3.5 autOmatED viSualiZatiOn EvaluatiOn

Generally, automated visualization evaluation requires
modeling perception and cognition for image interpreta-
tion, joined with more traditional data analysis tech-
niques on the source data. Th e bin-based representation
in abstract rendering provides a place for some of the rel-
evant models to interact. Two simple perceptual models
have already been implemented (see figure 5 & 6).

Th e fi rst model warns of over and under saturation
(e.g., dynamic range clipping) in a chosen color ramp.

Figure : US Census Map with races data aggregated and then woven at the state level.

PReSeRvING DATA wHIle ReNDeRING
jOSePH A. COTTAM, PHD AND PeTeR wANG

PARSONS jOuRNAl FOR INFORMATION MAPPING
vOluMe vI ISSue 1, wINTeR 2014
[PAGe 7]

© 2014 PARSONS jOuRNAl FOR
INFORMATION MAPPING AND PARSONS
INSTITuTe FOR INFORMATION MAPPING

Figure 6 shows pixels where non-zero values are mapped,
colors are indistinguishable from the background and
where non-maximal values are mapped to the same value
as the maximum. Color comparison is done with a simple
model of perception. Th e AR phrasing extends equation
HomoAlpha (section 3.2) with a set of functions that
measures the outputs and identifi es off ending pixels.

Th e second model represents sub-pixel distribution
information, indicating locations with non-uniform
distributions hidden below the bin aggregation level.
Figure 7a illustrates the basic premise. Each column
in the fi gure has the same number of items, but a diff er-
ent distribution. Figure 7b shows a sub-pixel analysis
of the Kiva adjacency matrix. In this analysis the ratio
of values in sub-divided pixels is drawn. High ratios are
plotted in black, while low ratios are plotted in white.
Th is highlights some interesting asymmetric and tem-
poral features (on the left edge) of the dataset. Th e basic
idea is to preform AR at a higher resolution than the
eventual display will have. One transfer step combines
all of the higher resolution values that will correspond
to a single output pixel and computes a distribution
score. Figure 7b represents the resulting interpolating
distribution scores for Figure 3. Darker regions have
less uniform distributions.

Figure : US Census population with standard alpha composition (figure 2a & clip-warning).

Figure : Sub-pixel bin-based analysis provides a view
into regions of interesting substructure.

preserving data while rendering
joseph a. cottam, phd and peter wang

PARSONS jOuRNAl FOR INFORMATION MAPPING
vOluMe vI ISSue 1, wINTeR 2014
[PAGe 8]

© 2014 PARSONS JOURNAL FOR
INFORMATION MAPPING AND PARSONS
INSTITUTE FOR INFORMATION MAPPING

3.6 SpREaDing

spreading
bxy = select({color(g)|g ∈ intersects(G, pxy)})
cxy = spread(bxy, x, y, residues(B, x, y))

Spreading is a pixel-oriented technique where items that
would be over-plotted are instead placed on nearby pix-
els instead. Spreading algorithms typically work in two
phases. In the first phase, items that will not be spread are
selected. In the second, a new location for each spread
item is selected. Details of the spreading algorithm deter-
mine the properties present in the results.20

In Equation Spreading, select produces a pair; one
item to keep in place, and a list of items to spread. (It
returns two null items if no item is on the given pixel.)
residues takes an aggregate set and collects all items that
need a new location. spread either takes the fixed item
from bxy if there is one present or picks an item from
the set produced by residues if there was no fixed item
in axy. The details of select and spread determine the
exact spreading algorithm being used. An even more
abstract version of spreading can be obtained by replac-
ing color with a data-returning function and including
a projection in spread to convert that abstract repre-
sentation into a color.

3.7 SubSEt EnhancE

enhance
bxy = count({id(g)|g ∈ intersects(G, Pxy)})
cxy = interpolate(bxy, red.10, red, min(subset(B, ...)),

max(subset(B, ...)))

All prior technique discussions have assumed that the en-
tire dataset was equally relevant. However, in many cases
only a subset of the data is of direct concern, the remain-
ing data providing context. Abstract rendering provides
a direct means to implement focus-plus-context tech-
niques that operate at a pixel level. For example, homoge-
neous alpha composition (Section 3.2) as applied to the
US Census data in Figure 2b, uses the full set of bin-
values to determine the maximum and minimum values
in the range. Figure 8 shows an alternative encoding
where just a portion of the Midwest is used to setup the
dynamic range. Values inside of the box carry the original
high definition alpha dynamic range guarantees. Val-
ues outside of the box are encoded on the same ramp as
those inside the box, but may experience value clipping.
The boxed area gets the full dynamic range (i.e. it is
‘enhanced’), while other areas are made more obscure.
Equation enhance shows homogeneous alpha modified

Figure 8: US
Census populations
with the Midwest
‘enhanced’.

(Figure 2a)

preserving data while rendering
joseph a. cottam, phd and peter wang

PARSONS jOuRNAl FOR INFORMATION MAPPING
vOluMe vI ISSue 1, wINTeR 2014
[PAGe 9]

© 2014 PARSONS JOURNAL FOR
INFORMATION MAPPING AND PARSONS
INSTITUTE FOR INFORMATION MAPPING

for region enhancement. The change is to
transfer equation by using subset (B, ...)
instead of B directly to compute the max and
min values. Corresponding changes can be
made to other AR encodings, providing a
general means for selective enhancement.

4 pERfORmancE

Runtime performance is an important part
of all visualization frameworks. To be appli-
cable to interactive data analysis, reasonable
execution times are required in all parts
of the framework. Simply put, the two equa-
tions AR phases (see Section 2.1) also
divide the framework into two performance
regimes. Performance in aggregation equa-
tion is largely determined by the size of the
input data and efficient handling thereof. In
contrast, performance in the transfer equa-
tion dependent on the number of bin-values,
and thus related to resulting image size in-
stead of the input size. Practically speaking,
transfer functions are also used for interac-
tivity and thus have significant pressure
to reach runtimes less than 100ms.

The Java implementation was used to
characterize performance. This implementa-
tion closely follows the description given in
Section 2.1, with a few modifications for
efficiency and parsimonious coding. The two
most significant changes are that aggrega-
tion is based around incremental construc-
tion, and transfer is based on bulk-opera-
tions. Incremental aggregation construction
means that a current aggregate value is
combined with a single new info value. This
change enables aggregation to only visit each
input node once (as opposed to once for
each pixel it touches). As a result of incre-
mental aggregation, the aggregator must be
commutative and associative and provide an
identity value. Transfer with bulk operations
means transfer functions are expected to
take an entire set of aggregates and produce
an entire new set instead of working one
value at a time as presented. This change
makes it easier to create transfer functions
that can be composed and execute efficiently.
Both changes contribute significantly to the
ability to automatically parallelize the imple-

kiva (37m entries)

RUNTIME VS. CORE COUNT (KIVA)

core count

ru
nt

im
e

(m
s)

4500

4000

3500

3000

2500

2000

1500

1000

500

0
1 2 3 4 5 6 7 8

us census (306m entries)

RUNTIME VS. CORE COUNT (US CENSUS)

core count

ru
nt

im
e

(m
s)

60,000

50,000

40,000

30,000

20,000

10,000

0
1 2 3 4 5 6 7 8

Figure 9: Scaling behavior of AR as processor core count and task count
in-crease. Both datasets had the same general behavior, though the abso-
lute values differed for the different analysis steps and data size.

preserving data while rendering
joseph a. cottam, phd and peter wang

PARSONS jOuRNAl FOR INFORMATION MAPPING
vOluMe vI ISSue 1, wINTeR 2014
[PAGe 10]

© 2014 PARSONS JOURNAL FOR
INFORMATION MAPPING AND PARSONS
INSTITUTE FOR INFORMATION MAPPING

mentation using Java’s fork/join framework.
A more complete performance analysis is given in

other work.21 However, the general result is that the ab-
stract rendering implementation scales as more proces-
sors are provided to aggregation (Figure 9). Further-
more, the general performance of aggregation enables
large datasets to be approached (hundreds of millions
of items), provided the data can be read efficiently and
transformed into a geometric representation. Transfer
execution also scales with more processors, maintaining
execution speeds below 100ms across the image sizes
produced and regardless of the input data size. Overall,
the performance numbers are supportive of interactive
visualization applications.

cOncluSiOnS

Visualization relies on encoding data in pixels to com-
municate useful information. Directly preserving that
data in the rendering process (instead of indirectly
through color or position) enables a wide variety of visu-
alization techniques. These techniques include methods
for addressing overplotting, focus-plus-context methods,
and automated evaluation. Abstract rendering presents a
compact and accessible way to conceptualize these tech-
niques. Using AR, the techniques discussed in this paper
can be compactly described and efficiently executed.
Overall, retaining data long into the rendering process
is a practical way to deal with datasets of all scales to
produce meaningful visualizations.

acKnOWlEDgEmEntS

This work was funded in part under the DARPA XDATA
program and through the Lilly Endowment.

biOgRaphY

Joseph A. Cottam is a postdoctoral researcher at Indiana
University. His work focuses on systems and programming
languages to support data analysis and visualization.

Peter Wang is the president and co-founder of Continuum
Analytics. He has worked on data analysis and visualiza-
tion products for the past ten years.

nOtES

1 S. K., J. Mackinlay Card and B. Shneiderman. Read-
ings in Information Visualization: Using Vision to Think.
Morgan Kaufman. 1999.

2 D. Cable. The Racial Dot Map – Weldon Cooper
Center for Public Service. http://www.coopercenter.org/
demographics/Racial-Dot-Map 2013, July

3 D.A. Keim. Designing Pixel-oriented Visualization
Techniques: Theory and Applications. IEEE Transactions on
Visualization and Computer Graphics 6 (1), 59–78. 2000,
January

4 J. Johansson, P. Ljung, M. Jern, and M. Cooper. “Re-
vealing Structure Within Clustered Parallel Coordinates
Displays.” In Proceedings of the Proceedings of the 2005
IEEE Symposium on Information Visualization, INFO-
VIS ’05, Washington, DC, USA, pp. 17–. IEEE Computer
Society; C. Muelder, F. Gygi, and K.-L. Ma (2009, No-
vember). Visual analysis of inter- process communication
for large-scale parallel computing. IEEE Transactions on
Visualization and Computer Graphics 15 (6), 1129–1136.
2009, November

5 S.T. Biddlecome,Fang and M. Tuceryan. “Image-
based Transfer Function Design for Data Exploration in
Volume Visualization.” In Proceedings of the conference
on Visualization 1998, VIS ’98, Los Alamitos, CA,

6 T. Urness, V. Interrante, I. Marusic, E. Longmire, and
B. Ganapathisubramani. “Effectively Visualizing Multi-
Valued Flow Data Using Color and Texture.” In Proceed-
ings of the 14th IEEE Visualization 2003 (VIS’03), VIS ’03,
Washington, DC, USA, pp. 16–. IEEE Computer Society;
H. Hagh-Shenas, V. Interrante, C. Healey, and S. Kim.
“Weaving Versus Blending: A Quantitative Assessment of
the Information Carrying Capacities of Two Alternative
Methods for Conveying Multivariate Data with Color.” In
Proceedings of the 3rd symposium on Applied perception
in graphics and visualization, APGV 2006, New York, NY,
USA, pp. 164–164. ACM.

7 B.B. Bederson, J. Grosjean, and J. Meyer (2004).
Toolkit design for interactive structures and graph-
ics. IEEE Transactions on Software Engineering 30 (8),
535–546.

8 J. Heer and M. Agrawala. Software Design Patterns

preserving data while rendering
joseph a. cottam, phd and peter wang

PARSONS jOuRNAl FOR INFORMATION MAPPING
vOluMe vI ISSue 1, wINTeR 2014
[PAGe 11]

© 2014 PARSONS JOURNAL FOR
INFORMATION MAPPING AND PARSONS
INSTITUTE FOR INFORMATION MAPPING

for Information Visualization. IEEE transactions on visual-
ization and computer graphics 12 (5), 853–60. 2006.

9 C North. “Multiple Views and Tight Coupling in
Visualization: A Language, Taxonomy and System.” In
Workshop of Fundamental Issues in Visualization, Las
Vegas, NV, USA, pp. 626–632. 2001, June.

10 B. Corrie and P. Mackerras. Data shaders. In Pro-
ceedings of the 4th conference on Visualization 1993, VIS
’93, Washington, DC, USA, pp. 275–282. IEEE Computer
Society; B. McDonnel and N. Elmqvist. “Towards Utiliz-
ing GPUS in Information Visualization: A Model and
Implementation of Image-space Operations.” IEEE Trans-
actions on Visualization and Computer Graphics (Proc.
InfoVis 2009) 15 (6), 1105–1112.

11 Z. Liu, B. Jiang, and J. Heer. “imMens: Real-time
Visual Querying of Big Data.” Computer Graphics Forum
(Proc. EuroVis) 32. 2013. ; L. Lins, J. T. Klosowski, and
C. Scheidegger. “Nanocubes for Real-time Exploration of
Spatiotemporal Datasets.” IEEE Transactions on Visual-
ization and Computer Graphics (Proc. InfoVis 2013) 19
(12), 456–2465; H. Wickham. “Bin-Summarize-Smooth: A
Framework for Visualizing Large Data.” Technical report,
had.co.nz. 2013.; M. Stonebraker, L. Battle, and R. Chang.
“Dynamic Reduction of Query Results for Interactive
Visualization.” In IEEE The First Workshop on Big Data
Visualization. 2013, October

12 H. Piringer, C. Tominski, P. Muigg, and W. Berger.
“A Multi-threading Architecture to Support Interactive
Visual Exploration.” IEEE Transactions on Visualization
and Computer Graphics 15 (6), 1113–1120. 2009; J.A.
Cottam. and A. Lumsdaine. “Automatic Application of
the Data-state Model in Data-flow Contexts.” In IV ’10:
Proceedings of the 2010 14th International Conference
Information Visualization, Washington, DC, USA. IEEE
Computer Society.

13 O. A. R. Board, D. Shreiner, M. Woo, J. Neider, and
T. Davis. OpenGL Programming Guide: The Official Guide
to Learning OpenGL. Addison- Wesley Professional. 2007;
Khronos OpenCL Working Group (2010, September). The
OpenCL Specification, version 1.1.

14 See note 2

15 M. C. Stone. A field guide to digital color. A K
Peters. 2003.

16 C. Muelder, F. Gygi, and K.-L. Ma. “Visual Analysis
of Inter-process Communication for Large-scale Paral-
lel Computing.” IEEE Transactions on Visualization and
Computer Graphics 15 (6), 1129–1136. 2009, November

17 Ibid

18 See note 4

19 H. Hagh-Shenas, V. Interrante, C. Healey, and S.
Kim. “Weaving Versus Blending: A Quantitative Assess-
ment of the Information Carrying Capacities of Two Al-
ternative Methods for Conveying Multivariate Data with
Color.” In Proceedings of the 3rd symposium on Applied
perception in graphics and visualization, APGV 2006,
New York, NY, USA, pp. 164–164. ACM.

20 See note 3

21 J.A. Cottam, A. Lumsdaine, and P. Wang. “Over-
plotting: Unified Solutions Under Abstract Rendering.” In
IEEE The First Workshop on Big Data Visualization. 2013,
October.

