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abStRact The fundamental premise of visualization is 
that a useful correspondence between pixels and data can 
be built. However, visualization programs rarely operate at 
the pixel level. Instead of the discrete, finite space of pixels, 
the most common visualization models work with can-
vases of floating-point coordinates and geometric shapes. 
Preserving some source data link all the way down to the 
pixel level provides many opportunities for improving vi-
sualization. This paper describes Abstract Rendering (AR), 
a framework that preserves the data-to-pixel link. Using 
this pixel-level link, AR is used to provide a unique control 
over the final visual representation of data sets at all scales 
and from a variety of visualization technique families.

intRODuctiOn

Visualization transforms source information into a ren-
dered set of pixels. The info-vis reference model provides 
a vocabulary for discussing that transformation process.1 
Visualization frameworks tend to focus on “visual map-
pings” stage. In this stage raw data is projected into an 
abstract coordinate space, and graphics are represented 

with high precision on an abstract, typically large, can-
vas. Conversion to actual pixels is given significantly less 
attention in current research. Many frameworks simply 
offload the view transforms and related rasterization 
to external graphics libraries (such as SVG, OpenGL 
or Java2D). Efficient transfer to or speed of the exter-
nal library are often the only consideration discussed. 
Abstract Rendering (AR) expands the “view transform” 
stage of the info-vis reference model (see Figure 1) 
enabling direct discussion of render-time effects pertinent 
to visualization construction in a simplified manner.

The need to consider pixel-level effects is most appar-
ent when working with point-oriented datasets where the 
number of items to display exceeds the number of pixels 
on the screen. For example, the visualizations in Figure 
2 are based on a dataset that contains one point for every 
person in the contiguous United States according to the 
2010 census2 (i.e. 306.7 million points). At 300dpi, 
it would require a sheet of paper approximately five 
feet square to provide a discrete dot for every person 
(ignoring actual geographic distribution). Treatments 
based only on geometric points and alpha composi-
tion cannot convey the true dynamic range and spatial 
distribution of the data (Figure 2a). Considering the 
pixels directly enables a variety of more accurate treat-
ments (Figure 2b). AR provides a means of controlling 
the transition between the geometric representation 
and the pixel representation.

Succinctly, abstract rendering is the application 
of data transformations at render time. The fundamental 
observation is that individual pixels of a visualization 

Preserving Data While Rendering

JOSEph a. cOttam, phD

pEtER Wang

Figure 1: Information visualization reference model Card et al (1999), extended for Abstrat Rendering.
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map back to underlying data, mediated by the more com-
mon geometric representations. AR provides a means 
of directly defining that per-pixel transformation. 
An AR definition consists of two equations (discussed 
in detail in Section 2.1). The first defines per-pixel 
data summarizations, the second provides transforma-
tions of those summarizations (eventually to colors). 
The system is named abstract rendering because it 
computes a per-pixel result, much like standard render-
ing, but the pixel values do not need to be colors and 
may undergo further transformations (thus, the values 
remain in a more abstract space). AR enables direct 
expression of many visualization behaviors, including 
over-plotting, pixel-oriented techniques, and automated 
visualization analysis (see Section 3).

2 RElatED WORK

Visualization is most often concerned with pixels in two 
ways; first, are visualization techniques that are specifical-
ly targeted at pixel-level details (so-called “pixel-oriented 
techniques”). Pixel-oriented techniques try to maximize 
data preservation by considering individual pixels in the 
display. Often pixels are placed in 1:1 correspondence 
with data items. Common features include space-filling 
layouts and distortions oriented at packing and spread-
ing data to prevent over-plotting.3 

The second way visualizations often deal with pixel-
level effects is emergent effects, as occur with alpha 
composition. Standard alpha composition has known 
limitations for handling large amounts of over-plotting. 
Many alpha channels are limited to eight bits, capping 
over-plot at 256 items if alpha is set to the minimum 
visible level. In most circumstances, such low alpha val-
ues are unacceptable, since areas with few values would 
be practically indistinguishable from the background. 
Johansson, et al. describes a multi-stage technique for 
high-definition alpha compositing, and Muelder, et al. 
employs this technique while visualizing MPI communi-
cation behavior.4 

High-definition alpha composition invokes transfer 
functions more common of scientific visualization.2 
A traditional transfer function takes a 3D information 
space, discretized into a set of “voxels,” and maps each 
voxel to a color. This mapping can take into consider-
ation information beyond the properties of the immedi-
ate voxel including neighboring voxel values and viewing 
angle. The application of transfer function in AR follows 
the pattern of earlier work Muelder et al and Johansson 
et al., operating on pixels instead of voxels. A high-
precision pixel space is created (either explicitly as an 

(a) Standard Alpha Composition

(b) Bin-based Counts, Interpolation and Perceptual 
Corrections

Figure 2: US Census populations with and without bin-
based counts realized.
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off-screen buffer or implicitly by functional processes 
on a scene-graph) for the source data to the transfer 
function. The transfer function processes this high-pre-
cision space in the context of the view transformation 
to determine the actual rendered pixels. This process 
may include reference to neighboring pixels, the view 
transformation, or underlying source data. The transfer 
function provides opportunities to perform render-time 
optimizations such as ensuring visibility of particularly 
important features and emphasizing specified range 
in a statistical distribution.

Some techniques do consider pixel-level issues 
in ways distinct to the two main methods described 
above (explicit pixel-oriented techniques and emergent 
controls). Color-weaving is a recent technique in this 
category.6 Color-weaving presents each relevant color 
in part of each region it belongs in, rather than blending 
each color in a pixel. The colors in the region can be 
made proportional to the underlying data, similar 
to how opacity scaling enables proportional contribu-
tion at the pixel level. Though developed for applying 
multiple factors to a single region, the concept can be 
extended to emergent regions formed by overlapping 
polyhedra. Semantic zoom techniques change the visual 
mapping of information based on the screen space allot-
ted to them.7 This is in contrast to standard zoom where 
only the view’s affine transform is modified as screen 
space is reapportioned. AR can implement semantic zoom 
by modifying the renderer depending on screen space.8

Blending geometric and data components into 
a rendering system is part of most coordinated multiple 
views systems (CMV) where visual linkages are deter-
mined by underlying data relationships.9 These rela-
tionships typically override the regular standard visual 
representations for selected items. It is also similar to Data 
Shaders and many GPU techniques that use color buffers 
as data buffers.10

Including binning in a visualization pipeline is not 
unique to abstract rendering; 2013 saw several variations, 
including imMens, Nanocubes, BigVis, and, to a lesser 
degree, Scalar.11 Each of these frameworks shares the 
core concept of using binning as a fundamental opera-
tion, though they differ in when the bins are created and 
how those bins are used, however, all share an observa-
tion that pixel-level data is often useful. Nanocubes, and 
imMens both focus on in-memory representations and 
building visual representations off those representations, 
while BigVis provides additional statistical modeling 
capabilities over other bin-based frameworks.

Parallelizing rendering is an extensively explored 

topic. In recent years, Piringer, et al. have described task-
parallel rendering based on distinct layers of data and 
Cottam and Lumsdaine discussed task-and data-parallel 
rendering techniques for dynamic data.12 Developments 
such as OpenGL and OpenCL also add to this discussion. 
OpenGL is essentially a framework controlling data-par-
allel analysis related to rendering; the OpenCL frame-
work extends that idea to more general data processing.13 
The framework described in this paper complements much 
of this research. For example, AR can provide a per-layer 
and cross-layer composition framework for layer-based 
techniques. It also provides a structure for exploiting 
parallelism implicit in single-layer techniques (such as 
color-weaving and semantic zoom).

2.1 abStRact REnDERing

Abstract rendering is done by chaining together functions 
that fulfill four different roles. The four function-roles are 
(1) select, (2) info, (3) aggregate, and (4) transfer. These 
functions are combined in the following fashion:

bxy = Aggregate ({Info(g)|g ∈ Select(G, pxy)})
cxy = Transfer(bxy, B)

The top equation is used to create the pixel-like, discrete 
representation of the source data from the geometric data. 
This is essentially a binning process, so the discrete values 
are referred to as bin values. The “select” function picks 
geometric items for a given location; the “info” function 
produces a data value associated with a geometric item; 
and the “aggregate” function combines lists of info values 
together to form a bin value. An effective synthetic data 
space enables further analysis, performed by a “transfer” 
function. In this formulation x/y values refer to posi-
tions on the screen and must match up between the two 
equations to color a single image pixel. Furthermore, 
G represents all glyphs with g ∈ G, Pxy is a geometric 
representation of a pixel, bxy represents a bin (corre-
spondingly B represents the entire set of bins), and cxy 
is a final pixel color. Each function fulfilling a particu-
lar role may require additional arguments, though the 
given parameters above are common to most. For ease 
of expression, multiple bin-transformations stages may 
be performed. When more than one transfer function 
is present, intermediate bin-values are numbered and 
transfers are executed sequentially.

These four functions-roles are populated with specific 
implementations to produce images. For example, Fig-
ure 2b is derived from the 2010 US Census. The glyph-
input (G) includes 306.7 million data points, one for each 
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person in the contiguous United States. Points are placed 
so each census block contains the same number of points 
as people and are annotated with the race information 
to match the distributions in the block. This data was 
originally produced in support of the Racial Dot Map 
and shared by that project’s directory Cable (2013).14 
The bin-space is built by counting the number of input 
points that land on each pixel, then transforming and 
interpolating over the full range of those counts. The AR 
phrasing is:

 
b1xy = size({identity(g)|g ∈ intersects(G, pxy)})
b2xy = exp(b1xy, 1/3)

cxy = interpolate(b2xy, red.10, red, min(B2), max(B2))
 

A two-phase transformation is made to do perceptual cor-
rection that more closely approximates human response to 
changes in luminance Stone (2003).15 The first step (creat-
ing the b1xy values) breaks the input data into a bin-grid 
based on the pixel that the input points land on through 
the “selector” function intersects. Since only the presence/
absence is of interest, the “info” function is identity 
and the aggregator “size” counts the number of items 
in a list. The creation of b2xy with the “transfer” function 
exp values is for perceptual correction. The transformed 
counts are then analyzed to find the minimum and maxi-
mum values. A color ramp can be built between those two 
values and directly applied to the bin values. Therefore, 
interpolate(b2xy , red.10, red, min(B2), max(B2)) supplies 
the color for each pixel, operating as a second transfer 
function (red.10 is red at 10% saturation, b2xy is a single 
bin value and B2 is all bin-values from the earlier transfor-
mation). This avoids over-saturation in the highest peaks, 
while guaranteeing visibility of the lowest troughs (shown 
at 10% saturation). The result is a correct image of the 
distribution of the nodes of the census.

The four function-role system can be employed to cre-
ate more complex representations as well. Extending the 
census plot to represent race/ethnic-group information 
in the color requires application of the “info” function. For 
example, the image of Figure 4 is derived from racial an-
notations on each of the input points. It is phrased in AR: 

HighAlpha
b1xy = countCategories({race(g)|g ∈ intersects(G, pxy)})
b2xy = reKey(b1xy,{African: Green, Asian: Red,

Caucasian: Blue, ...})
cxy = HDAlpha(b2xy, B2)

 
Race is the “info” function, and retrieves a race annota-

tion on each data point. The function countCategories is 
the “aggregator” and creates a list of the unique values 
seen paired with the sum of all occurrences of that cat-
egory. reKey is a “transfer”function and replaces the keys 
of a dictionary with the keys found in a new dictionary. 
In this case, the old dictionary was produced by count-
Categories and included programming race/ethnic-group. 
reKey uses its second argument to associate the counts 
with colors instead. HDAlpha is also a “transfer” function , 
and expects a set of colors and quantities for each pixel.16

The four function-role formalization of AR is the 
basis of two implementations of AR (one in Java, one 
in Python). Both implementations directly represent 
all four functions. Despite the relatively high-level rep-
resentation, we have implemented dozens of bin-based 
algorithms, and achieved efficient execution in a wide 
variety of environments.

3 aR applicatiOnS

The general abstract rendering form can be used to 
describe many different visualization techniques. This 
section provides the equations for several existing tech-
niques. Again, example figures provided in this section 
are derived from the 2010 US Census data.

3.1 OvERplOtting

overplot
b1xy = countCategories({race(g)|g ∈ intersects(G, pxy)})

cxy = HDAlpha(b2xy, B2)

Basic overplotting occurs when pixels colors are assigned 
on a last-write-wins basis. To achieve overplotting in 
the AR framework, an ordering basis must be estab-
lished. In the equation shown above, the ordering basis 
is the Z-value of the glyphs. The information function 
selects the color and the Z from each glyph, the reduc-
tion picks the color of the glyph with the largest Z value. 
The resulting aggregate-set is a list of colors. 

3.2 hOmOgEnEOuS alpha cOmpOSiting

HomoAlpha
b1xy = count({id(g)|g ∈ intersects (G, Pxy)})

cxy = interpolate(bxy, red.10, red, min(B), max(B))

Instead of selecting which item to render on a particular 
pixel, blending the items of a pixel is a common tech-
nique. Alpha composition is the most common expres-
sion of blending.
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Homogeneous alpha composition occurs whenever 
all rendered items have the same visual representation. 
Th e synthetics-set is made by counting the glyphs that 
intersect each pixel (using the count function). Th e in-
terpolate function then interpolates between two colors 
(red.10 being 10% saturated red). Th e full bin-set (B)is 
used to establish the low and high input values. Working 
with the counts directly enables more fi ne-grained con-
trol over the interpolation, avoiding issues of unknow-
ingly over-saturating the alpha-buff er. Th erefore,the AR 
representation is trivially able to implement high-defi ni-
tion alpha composition.17

Homogeneous alpha composition is used to produce 
density representations, like those in Figures 2b and 
3. Th e adjacency matrix (Figure 3) represents 37 mil-
lion transactions from the Kiva micro-fi nance site. Each 
transaction represents a monetary transfer between 
a lender, borrower, or intermediary. Each actor was 
given an identifi er, with senders placed on the x-axis 
and receivers placed on the y-axis. Each transaction is 
represented as a point at the intersection of the sender 
and receiver. Th e coloring was done by log-transforming 
the counts of items contained in each pixel. Using stan-
dard alpha composition, over 50% of the colored pixels 
would be at full saturation. With AR, an image that 
displays more nuanced patterns is achieved. 

3.3 high-DEfinitiOn alpha cOmpOSiting

Full high-defi nition alpha composition extends the 
concern of buff er over-saturation seen in homogeneous 
alpha composition to both the alpha and the color buff ers. 
As with homogeneous alpha composition, the key is to 
measure the extrema before applying the interpolation 

Figure : Adjacency matrix of the Kiva dataset with 
density log transformed and homogeneous alpha compos-
iting applied.

Figure :
Adjacency matrix 
of the Kiva data-
set with density log 
transformed and 
homogeneous alpha 
compositing applied.
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function. Equation HighAlpha from Section 2.1 gives 
the defi nition for high-defi nition alpha composition. 
Details on these range calculations and scalings can be 
found in the earlier works of Muelder et al and Johans-
son et al.18 Th e necessary range information is derived 
from the bin-values (B). Equation HighAlpha is applied 
in Figure 4.

High-defi nition alpha composition can be modifi ed 
by sorting on the output color or a data fi eld to achieve 

“stratifi ed” alpha composition. Th is stratifi cation can be 
used to emphasize particular values in the plot (since 
alpha composition is order dependent) or provide more 
effi  cient rendering (for example, WebGL oft en performs 
faster when there are fewer pen-color changes). 

3.4 cOlOR WEaving

WEAVE
b1xy = countCategories({race(g)|g ∈ intersects(G, pxy)})
b2xy = reKey(b1xy,{African: Green, Asian: Red,

Caucasian: Blue, ...})
cxy = randomCategory(b2xy)

Color weaving takes an alternative tack to representing 
more than one item in a space. Rather than blending 

colors in one pixel as with alpha composition, it rep-
resents a mosaic pattern of the original source colors 
throughout the space. To achieve this, new “selector” 
and “transfer” functions are is used. Instead of just 
containing items that land in a pixel, sameContainer
gets all items that land in the same region as the current 
pixel. For Figure 5, any pixel that lands in a state will 
get values for all people in the state. Th e second transfer 
function, randomCategory, selects a single category
to from the list and returns just its key (which, by virtue 
of reKey) is a color. Implementing randomCategory in ac-
cordance with Hagh-Shenas et al, results in proportional 
color weaving.19 Modifi cations to how randomCategory
selects values yields diff erent weaving variations.

3.5 autOmatED viSualiZatiOn EvaluatiOn

Generally, automated visualization evaluation requires 
modeling perception and cognition for image interpreta-
tion, joined with more traditional data analysis tech-
niques on the source data. Th e bin-based representation 
in abstract rendering provides a place for some of the rel-
evant models to interact. Two simple perceptual models 
have already been implemented (see figure 5 & 6).

Th e fi rst model warns of over and under saturation 
(e.g., dynamic range clipping) in a chosen color ramp. 

Figure : US Census Map with races data aggregated and then woven at the state level.
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Figure 6 shows pixels where non-zero values are mapped, 
colors are indistinguishable from the background and 
where non-maximal values are mapped to the same value 
as the maximum. Color comparison is done with a simple 
model of perception. Th e AR phrasing extends equation 
HomoAlpha (section 3.2) with a set of functions that 
measures the outputs and identifi es off ending pixels.

Th e second model represents sub-pixel distribution 
information, indicating locations with non-uniform 
distributions hidden below the bin aggregation level. 
Figure 7a illustrates the basic premise. Each column
in the fi gure has the same number of items, but a diff er-
ent distribution. Figure 7b shows a sub-pixel analysis 
of the Kiva adjacency matrix. In this analysis the ratio 
of values in sub-divided pixels is drawn. High ratios are 
plotted in black, while low ratios are plotted in white. 
Th is highlights some interesting asymmetric and tem-
poral features (on the left  edge) of the dataset. Th e basic 
idea is to preform AR at a higher resolution than the 
eventual display will have. One transfer step combines 
all of the higher resolution values that will correspond 
to a single output pixel and computes a distribution 
score. Figure 7b represents the resulting interpolating 
distribution scores for Figure 3. Darker regions have 
less uniform distributions.

Figure : US Census population with standard alpha composition (figure 2a & clip-warning).

Figure : Sub-pixel bin-based analysis provides a view 
into regions of interesting substructure.
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3.6 SpREaDing

spreading
bxy = select({color(g)|g ∈ intersects(G, pxy)})
cxy = spread(bxy, x, y, residues(B, x, y))

Spreading is a pixel-oriented technique where items that 
would be over-plotted are instead placed on nearby pix-
els instead. Spreading algorithms typically work in two 
phases. In the first phase, items that will not be spread are 
selected. In the second, a new location for each spread 
item is selected. Details of the spreading algorithm deter-
mine the properties present in the results.20

In Equation Spreading, select produces a pair; one 
item to keep in place, and a list of items to spread. (It 
returns two null items if no item is on the given pixel.) 
residues takes an aggregate set and collects all items that 
need a new location. spread either takes the fixed item 
from bxy if there is one present or picks an item from 
the set produced by residues if there was no fixed item 
in axy. The details of select and spread determine the 
exact spreading algorithm being used. An even more 
abstract version of spreading can be obtained by replac-
ing color with a data-returning function and including 
a projection in spread to convert that abstract repre-
sentation into a color.

3.7 SubSEt EnhancE

enhance
bxy = count({id(g)|g ∈ intersects(G, Pxy)})
cxy = interpolate(bxy, red.10, red, min(subset(B, ...)), 

max(subset(B, ...)))

All prior technique discussions have assumed that the en-
tire dataset was equally relevant. However, in many cases 
only a subset of the data is of direct concern, the remain-
ing data providing context. Abstract rendering provides 
a direct means to implement focus-plus-context tech-
niques that operate at a pixel level. For example, homoge-
neous alpha composition (Section 3.2) as applied to the 
US Census data in Figure 2b, uses the full set of bin-
values to determine the maximum and minimum values 
in the range. Figure 8 shows an alternative encoding 
where just a portion of the Midwest is used to setup the 
dynamic range. Values inside of the box carry the original 
high definition alpha dynamic range guarantees. Val-
ues outside of the box are encoded on the same ramp as 
those inside the box, but may experience value clipping. 
The boxed area gets the full dynamic range (i.e. it is 
‘enhanced’), while other areas are made more obscure. 
Equation enhance shows homogeneous alpha modified 

Figure 8: US 
Census populations 
with the Midwest 
‘enhanced’.

(Figure 2a)
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for region enhancement. The change is to 
transfer equation by using subset (B, ...) 
instead of B directly to compute the max and 
min values. Corresponding changes can be 
made to other AR encodings, providing a 
general means for selective enhancement.

4 pERfORmancE

Runtime performance is an important part 
of all visualization frameworks. To be appli-
cable to interactive data analysis, reasonable 
execution times are required in all parts 
of the framework. Simply put, the two equa-
tions AR phases (see Section 2.1) also 
divide the framework into two performance 
regimes. Performance in aggregation equa-
tion is largely determined by the size of the 
input data and efficient handling thereof. In 
contrast, performance in the transfer equa-
tion dependent on the number of bin-values, 
and thus related to resulting image size in-
stead of the input size. Practically speaking, 
transfer functions are also used for interac-
tivity and thus have significant pressure 
to reach runtimes less than 100ms.

The Java implementation was used to 
characterize performance. This implementa-
tion closely follows the description given in 
Section 2.1, with a few modifications for 
efficiency and parsimonious coding. The two 
most significant changes are that aggrega-
tion is based around incremental construc-
tion, and transfer is based on bulk-opera-
tions. Incremental aggregation construction 
means that a current aggregate value is 
combined with a single new info value. This 
change enables aggregation to only visit each 
input node once (as opposed to once for 
each pixel it touches). As a result of incre-
mental aggregation, the aggregator must be 
commutative and associative and provide an 
identity value. Transfer with bulk operations 
means transfer functions are expected to 
take an entire set of aggregates and produce 
an entire new set instead of working one 
value at a time as presented. This change 
makes it easier to create transfer functions 
that can be composed and execute efficiently. 
Both changes contribute significantly to the 
ability to automatically parallelize the imple-
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Figure 9: Scaling behavior of AR as processor core count and task count 
in-crease. Both datasets had the same general behavior, though the abso-
lute values differed for the different analysis steps and data size.
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mentation using Java’s fork/join framework.
A more complete performance analysis is given in 

other work.21 However, the general result is that the ab-
stract rendering implementation scales as more proces-
sors are provided to aggregation (Figure 9). Further-
more, the general performance of aggregation enables 
large datasets to be approached (hundreds of millions 
of items), provided the data can be read efficiently and 
transformed into a geometric representation. Transfer 
execution also scales with more processors, maintaining 
execution speeds below 100ms across the image sizes 
produced and regardless of the input data size. Overall, 
the performance numbers are supportive of interactive 
visualization applications.

cOncluSiOnS

Visualization relies on encoding data in pixels to com-
municate useful information. Directly preserving that 
data in the rendering process (instead of indirectly 
through color or position) enables a wide variety of visu-
alization techniques. These techniques include methods 
for addressing overplotting, focus-plus-context methods, 
and automated evaluation. Abstract rendering presents a 
compact and accessible way to conceptualize these tech-
niques. Using AR, the techniques discussed in this paper 
can be compactly described and efficiently executed. 
Overall, retaining data long into the rendering process 
is a practical way to deal with datasets of all scales to 
produce meaningful visualizations.
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